1) Suh YW. Virtual reality in ophthalmology field. Ann Optom Contact Lens 2019;18:6-9.
3) Winkler-Schwartz A, Bissonnette V, Mirchi N, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ 2019;76:1681-90.
4) Lareyre F, Adam C, Carrier M, et al. Artificial intelligence for education of vascular surgeons. Eur J Vasc Endovasc Surg 2020;59:870-1.
5) Shorten G, Srinivasan KK, Reinertsen I. Machine learning and evidence-based training in technical skills. Br J Anaesth 2018;121:521-3.
6) Brewer ZE, Fann HC, Ogden WD, et al. Inheriting the learner's view: a Google glass-based wearable computing platform for improving surgical trainee performance. J Surg Educ 2016;73:682-8.
7) Hirota M, Kanda H, Endo T, et al. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Ergonomics 2019;62:759-66.
8) Kwon J, Kang SY, Kim KH, et al. The ocular fatigue of watching three-dimensional (3D) images. J Korean Ophthalmol Soc 2012;53:941-6.
9) Song EJ, Jung AL. A study for reducing of cyber sickness on virtual reality. J DCS 2017;18:429-34.
10) Lee SH, Kim M, Kim H, Park CY. Relationship between ocular fatigue and use of a virtual reality device. J Korean Ophthalmol Soc 2020;61:125-37.
11) Yoon MH, Choi YS. A study on changes of near phoria before and after wearing smart glasses. Korean J Vis Sci 2017;19:241-8.
12) Mäntyjärvi M, Laitinen T. Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg 2001;27:261-6.
13) Jackson JH, Arnoldi K. The gradient AC/A ratio: what's really normal? Am Orthopt J 2004;54:125-32.
14) Ames SL, Wolffsohn JS, McBrien NA. The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom Vis Sci 2005;82:168-76.
15) Tanahashi M, Miyao M, Sakakibara H, et al. The effect of VDT work on the fluctuations of accommodation. Ind Health 1986;24:173-89.
17) Park SM, Lee HM. Objective evaluation of asthenopia using accommodative microfluctuation in the high-frequency region. J Korean Ophthalmic Optics Soc 2018;23:477-84.
18) Kajita M, Ono M, Suzuki S, Kato K. Accommodative microfluctuation in asthenopia caused by accommodative spasm. Fukushima J Med Sci 2001;47:13-20.
19) Charman WN, Heron G. Fluctuations in accommodation: a review. Ophthalmic Physiol Opt 1988;8:153-64.
20) Nakatsuka C, Hasebe S, Nonaka F, Ohtsuki H. Accommodative lag under habitual seeing conditions: comparison between adult myopes and emmetropes. Jpn J Ophthalmol 2003;47:291-8.
21) Win-Hall DM, Ostrin LA, Kasthurirangan S, Glasser A. Objective accommodation measurement with the Grand Seiko and Hartinger coincidence refractometer. Optom Vis Sci 2007;84:879-87.
22) Vera-Díaz FA, Strang NC, Winn B. Nearwork induced transient myopia during myopia progression. Curr Eye Res 2002;24:289-95.
23) Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study. Vision Res 2001;41:2511-20.
24) Shin KM, Chung SA, Lee JB. Comparative study on the efficacy of different cycloplegic agents in myopic adults. J Korean Ophthalmol Soc 2011;52:141-6.
25) Luberto F, Gobba F, Broglia A. [Temporary myopia and subjective symptoms in video display terminal operators]. Med Lav 1989 80:155-63. Italian.
26) Iwasaki T, Tawara A, Miyake N. Reduction of asthenopia related to accommodative relaxation by means of far point stimuli. Acta Ophthalmol Scand 2005;83:81-8.
28) Bergqvist UO, Knave BG. Eye discomfort and work with visual display terminals. Scand J Work Environ Health 1994;20:27-33.
29) Ha SG, Na KH, Kweon IJ, et al. Effects of head-mounted display on the oculomotor system and refractive error in normal adolescents. J Pediatr Ophthalmol Strabismus 2016;53:238-45.